FLUXIONAL ISOMERISM IN THE BICYCLO[4.2.2]DECA-2,4,7,9-TETRAENE SERIES

J. Altman, E. Babad, M.B. Rubin and D. Ginsburg

Department of Chemistry, Israel Institute of Technology, Haifa, Israel

(Received in UK 16 January 1969; accepted for publication 20 February 1969)

A flurry of activity in this field has recently produced proof that fluxional isomerism exists in bicyclo[4.2.2]deca-2,4,7,9-tetraene ("prebullvalene") and its derivatives.¹⁻⁴ We have irradiated a number of [4.4.3]propella-2,4,7,9-tetraene derivatives and have reported the isolation of the primary photo products in two of these. These were thermally isomerized te the corresponding "prebullvalene" derivatives⁵ but our more recent results require that we correct two structures previously formulated⁵ as <u>3c</u> and <u>3e</u>, to <u>4c</u> and <u>4e</u>, respectively. This arose from faulty interpretation of spectroscopic data, partly due to the use of a 60 Miz instrument. The 100 Miz spectra of the compounds concerned leave no doubt as to the correctness of 4c and $4e^6$ (see the Table).

 $R_{R} = a - CO - O - CO - ; b - CO - NH - CO - ; c - CO - NMe - CO - ; d - CO - O - CH_{2} - ; e - CH_{2} - O - CH_{2} - ; e - ; e - CH_{2} - ;$

The structure analogously formulated tentatively as $\underline{3a}^7$ has also been corrected to $\underline{4a}$, unfortunately without stating explicitly that a correction was being made.⁴ The formulation of $\underline{3a}$ was first questioned on chemical grounds by Bloomfield and McConaghy.³ (<u>Cf</u>. Ref.4, footnote 7). Information kindly supplied by Dr. Bloomfield led us to reinvestigate our published⁵ structures 3c and 3e.⁸

We thus reduced 4a-4c and obtained as the major products mixtures of hexahydroderivatives, <u>5</u> and <u>6</u>, having the same skeletal structure as <u>4</u>, as shown in the accompanying summary. A minor amount of octahydro-derivative <u>7</u> occasionally accompanied <u>5</u> and <u>6</u>. The summary also shows that the various reduction products were interrelated chemically. The product ratio in reduction of "prebullvalene" derivatives is temperature dependent and it is clear that both 1,2- and 1,4- reduction occurs with respect to the conjugated diene in the substrate. Octahydro-derivatives are presumably obtained by further reduction of products of type 5.

Summary of Reductions of "Prebullvalene" derivatives and Interrelation of Reduction Products

One vinylic proton may be observed in the NMR spectra of compounds of type 5, accompanied by 2 allylic protons and spin decoupling demonstrated the connection between these. Compounds of type 6, however, exhibited the expected four allylic protons.

We were able to isolate the primary photo-product <u>2b</u>, obtained by irradiation of <u>1b</u>^{9,10} in methanol at -78°. This was thermally converted into <u>4b</u>, m.p. 248-255°(dec.) with a half-life of <u>ca</u>. 1.5 hr. for the conversion <u>2b+4b</u> in methanol at 52°. Our attempts at isolation of <u>2a</u> and <u>2d</u> after irradiation of <u>1a</u> and <u>1d</u>, respectively, in methanol at -78°, were unsuccessful although their presence could be detected (CDCl₃ at -42°; allylic cyclo-propyl protons τ 7.63; 7.90 and 8.35, respectively) along with the products of their respective thermal isomerizations.

The 100 MHz room temperature spectrum of the analytically pure "prebullvalene"

Cpd.	UV(nm;log£) MeOH	$IR(v_{CO}; cm^{-1})$	NMR(T)	Cpd.	UV(nm;logε) MeOH	IR(V _{CO} ;cm ⁻¹) CHC13	NMR;No.of <u>Allylic H</u>
4a	255;3.95 310(sh);3.14	1765(s) 1785(s) 1835(s) (CHCl ₃)	<pre>2.45(doub.;2H₃;J=8.5c/s);4.22(mult.; 4H₁) both collapse to singlet on decoupling;6.20-6.45(mult.;2H₂) collapses to doublet on decoupling (CDCl₃)</pre>	5a	229;3.98	1770(s) 1795(w) 1830(m)	7
415	254;3.86 295(sh);3.14	1720(s) 1760(s) (KBr)	<pre>3.50(doub.;2H₃;J=9c/s);5.25(mult.; 4H₁)both collapse to singlet on decoupling;7.32-7.70(mult.;2H₂)(Py-d₅)</pre>	5b	226;3.22	1675(s) 1725;1735(s) 1775(s)	2
4c	248;4.12 293(sh);3.41	1690(s) 1760(m) (KBr)	2.61(doub.;2H_3;J=9c/s);4.21(mult.; 4H_1)both collapse to singlet on decoupling;6.30-6.50(mult.;2H_2) collapses to doublet on decoupling; 6.94(sing.;NCH_3)(CDC1_3)	<u>5</u>	229;3.43	1675(s) 1705;1715(s) 1770(s)	2
<u>4d</u>		See Text		<u>6a</u>	253;3.72	1770(s) 1835(m)	4
46	265;3.58 272;3.51 286(sh);3.34		<pre>3.90(doub.;2H_jJ=9c/s);4.31(mult.; 4H_1)both collapse to singlet on decoupling;5.51(doub.;CH_20);6.70- 6.90(mult.;2H_2)collapses to doublet on decoupling(CDCl₃)</pre>	<u>6</u> b	220;3.54 227(sh);3.52	1720;1730(s) 1780(w)	4
<u>2b</u>	end absorption 220;3.81	1700(s) 1780(s) (KBr)	3.96-4.08 (mult.;4 vinyl H) collapses to singlet on decoupling;7.74-7.85 (mult.;4 cyclopropyl H) collapses to singlet on decoupling (CDCl ₃)	3	225;3.37 237(sh);3.20	1710(s) 1775(w)	4

No.14

Table of Spectral Data

lactone, m.p. 93.5-95°, evidenced the presence of $\underline{3d}$, $\underline{4d}$ and a cyclopropane derivative different from $\underline{2d}$, tentatively believed to be τ 8.18). Since the "prebullvalene" lactone is the only member of the series whose 100 MHz NMR spectrum at room temperature does not exhibit the exclusive presence of structure $\underline{4}$ rather than $\underline{3}$, it is possibly the black sheep in the family and thus could be its most interesting member. A separate communication will be submitted on this subject.¹¹

All the compounds reported herein afforded satisfactory analytical and molecular weight data. The full details will be submitted for publication in the Israel Journal of Chemistry.

References and Footnotes

- 1) M. Jones, Jr. and B. Fairless, Tetrahedron Letters, 4881(1968).
- S. Masamune, R.T. Seidner, H. Zenda, N. Nakatsuka and G. Bigam, <u>J.Am.Chem.Soc.</u>, <u>90</u>, 5286(1968).
- 3) J.J. Bloomfield and J.S. McConaghy Jr., preceding paper in this issue.
- 4) W. Grimme, H.J. Riebel and E. Vogel, Angew.Chem., 80, 803(1968).
- 5) E. Babad, D. Ginsburg and M.B. Rubin, Tetrahedron Letters, 2361(1968).
- 6) We thank Prof. Dr. W. von Philipsborn of the University of Zürich for these spectra and for their unequivocal interpretation.
- 7) E. Vogel, W. Grimme, W. Meckel, H.J. Riebel and J.F.M. Oth, Angew.Chem., 78, 599(1966).
- 8) Letter from Dr. J.J. Bloomfield, July 12, 1968.
- 9) E.R. Wagner and A.D. Rudzik, J.Med.Chem., 10, 607(1967).
- Mr. C. Amit prepared this compound in much higher yield, unpublished results from this Laboratory.
- J. Altman, E. Babad, J.J. Bloomfield, D. Ginsburg, W. von Philipsborn and M.B. Rubin, unpublished results.